

Using TAdvStickyPopupMenu

1/3

Using TAdvStickyPopupMenu

Introduction

In some cases it is not desirable and even annoying that a menu immediately disappears when

a selection is made. To address such situations, the new component TAdvStickyPopupMenu

was created.

The TAdvStickyPopupMenu component was modelled after the new menu that can be found in

the Windows Vista File Explorer.

The TAdvStickyPopupMenu consists of a button bar (top area of the menu) and menu items.

The styles of the TAdvStickyPopupMenu are identical to the styles of a TAdvPopupMenu or

TAdvMainMenu and are controlled by the same styler (TAdvMenuOfficeStyler) This way, the

TAdvStickyPopupMenu can be set in Office 2003, Office 2007, Visual Studio .NET, Windows XP

or Windows Vista styles.

To show the menu, call TAdvStickyPopupMenu.ShowMenu(x,y: integer); with X,Y being either

screen coordinates or form coordinates for the position where the menu should appear. It is

controlled by the property TAdvStickyPopupMenu.DisplayRelative drScreen or drForm what

type of coordinates is used as X,Y parameters.

The TAdvStickyPopupMenu ButtonBar

On top of the menu, it is possible to have an optional buttonbar. When

TAdvStickyPopupMenu.ShowButtonsBar is true and the TAdvStickyPopupMenu.ButtonBar

collection contains buttons, this will be shown.

http://www.tmssoftware.com/site/advtoolbar.asp

Using TAdvStickyPopupMenu

2/3

Note that the height of the buttonbar is controlled by the styler with

AdvMenuOfficeStyler.SideBar.Size.

Each button in the ButtonBar can have a caption & image from the imagelist set with

TAdvStickyPopupMenu.ButtonImages. A click on a ButtonBar button can either automatically

hide the menu (like a classical popupmenu) when property TButtonBarItem.HideOnClick = true

or the menu remains visible when clicked when property TButtonBarItem.HideOnClick = false.

The click on the ButtonBar button can be handled by event TButtonBarItem.OnClick or via

TAdvStickyPopupMenu.OnButtonClick.

The TAdvStickyPopupMenu menu items

Several types of menu items are possible :

 Normal menu item : this is a menu item that can be enabled or disabled and that has a

caption and an imagelist image

 A CheckBox menu item : this is a menu item with a checkbox, optionally an imagelist

image and a caption. When AutoCheck = true, the checkbox automatically toggles on a

click, otherwise the property TStickyMenuItem.Checked should be used.

 A Radiobutton menu item : this is a menu item with a radiobutton, optionally an

imagelist image and a caption

 A splitter menu item : when MenuItem.Style = isSplitter, the item appears as just a

splitter line

In addition to these 4 types, all types can be combined with a control (or container control like

TPanel with more controls on it) and the control appears under the menu item. To add a

control to a menu item, simply drop the control on the form and assign it to MenuItem.Control.

Just like with a ButtonBar button, a click on a menu item can either automatically hide the

menu (like a classical popupmenu) when property TStickyMenuItem.HideOnClick = true or the

menu remains visible when clicked when property TStickyMenuItem.HideOnClick = false. The

click on the menu item can be handled by event TStickyMenuItem.OnClick or via

TAdvStickyPopupMenu.OnItemClick.

In addition to this event, the OnCheckClick is triggered when a checkbox item is clicked or

OnRadioClick is triggered when a radio menu item is clicked.

OwnerDraw menu items

Finally, it is possible to have custom drawing of the menu item image or the full menu item. To

use this, each TStickyMenuItem has two events, OnDrawImage and OnDrawItem.

This code draws a simple cross as menu item image:

procedure

TForm1.AdvStickyPopupMenu1MenuItems2DrawImage(Sender: TObject;

 Canvas: TCanvas; ARect: TRect; Selected: Boolean);

begin

Using TAdvStickyPopupMenu

3/3

 Canvas.MoveTo(ARect.Left, ARect.Top);

 Canvas.LineTo(ARect.Right, ARect.Bottom);

 Canvas.MoveTo(ARect.Right, ARect.Top);

 Canvas.LineTo(ARect.Left, ARect.Bottom);

end;

This code draws the menu item text with an italic font:

procedure

TForm1.AdvStickyPopupMenu1MenuItems2DrawItem(Sender: TObject;

 Canvas: TCanvas; ARect: TRect; Selected: Boolean);

begin

 Canvas.Font.Style := [fsItalic];

 Canvas.TextOut(ARect.Left, ARect.Top, (Sender as

TStickyMenuItem).Caption);

end;

